

LA-UR-21-28058

 $\label{lem:proved} \mbox{Approved for public release; distribution is unlimited.}$

Title: Development of a New Neutron Electric Dipole Moment Experiment at LANL

Author(s): Hassan, Md Taufique

Intended for: Job Interview

Issued: 2021-08-11

Development of a New Neutron Electric Dipole Moment Experiment at LANL

Md Taufique Hassan

Nuclear and Particle Physics and Applications (P-3) Group

Los Alamos National Laboratory

Neutron Electric Dipole Moment (nEDM)

An electric dipole moment is the asymmetry in a charge distribution

Neutron Beta Decay

$$n \to p + e^- + \bar{\nu}_e + 0.783 MeV$$

Neutron in Fundamental Physics Experiments

- Decay coefficients (e.g. Electron–antineutrino correlation, Spin-electron asymmetry, Spin-antineutrino asymmetry etc.)
- Neutron lifetime
- Neutron electron dipole moment (nEDM)

Neutron in Fundamental Physics Experiments

- Decay coefficients (e.g. Electron–antineutrino correlation, Spin-electron asymmetry, Spin-antineutrino asymmetry etc.)
- Neutron lifetime
- Neutron electron dipole moment (nEDM)

Neutron in Fundamental Physics Experiments

- Decay coefficients (e.g. Electron—antineutrino correlation, Spin-electron asymmetry, Spin-antineutrino asymmetry etc.)
- Neutron lifetime
- Neutron electron dipole moment (nEDM) with ultracold neutrons (UCN)

Some Ultracold Neutron (UCN) Properties

- KE less than 350 neV (at LANL UCN guides: < 200 neV)
- Speed < 7.6 m/s
- UCN wavelength: about 0.1 μm
 - close to visible light
 - mirrors for people can be mirrors for UCN
- 100% polarization is easy to achieve magnetic interaction (1 T = 60 neV)
- Gravitational interaction (1m = 100 neV)

Some Ultracold Neutron (UCN) Properties

Material	Fermi Potential (V _f)
Ni ⁵⁸	335 neV
Dimond	304 neV
BeO	257 neV
NiP	213 neV
Iron	210 neV
dps (deuterated polystyrene)	209 neV

LANL UCN Experimental Area

LANL nEDM Collaboration

T. Chupp, S. Clayton, C. Cude-Woods, S. Currie, M. T. Hassan, T. Ito, M. Makela, C. Morris, C. O'Shaughnessy, A. Saunders, Z.Tang, W. Uhrich, A. Urbaitis, Los Alamos National Laboratory

C. Swank

California Institute of Technology

T. Chupp, N. Sachdeva *University of Michigan*

J. Chen, F. Gonzales, C. Hughes, C.-Y. Liu, J. Long, A. Reid, W. Snow, D. Wong *Indiana University*

J. Brewington, W. Korsch, M. McCrea, P. Palamure, B. Plaster *University of Kentucky*

R. Pattie Jr. **East Tennessee State University**

S. Stanislaus *Valparaiso University*

T. J. Bowles and B. Heckel *University of Washington*

S. K. Lamoreaux Yale University

E. Sharapov

Joint Institute of Nuclear Research

Motivation for the LANL nEDM Experiment

- Current limit is at 10⁻²⁶ e cm
- The Lanl nEDM search is aiming for 10⁻²⁷
 e cm

nEDM (e cm)

$$\mathbf{H} = -(\vec{\mu}\vec{B} + \vec{d}\vec{E})$$

$$h\nu_{\uparrow\uparrow} = |2\mu_{\rm n}B + 2d_{\rm n}E|$$

$$h\nu_{\uparrow\uparrow}=|2\mu_{\rm n}B+2d_{\rm n}E|$$

$$\mathsf{H} = -(\,\vec{\mu}\vec{B} + \vec{d}\;\vec{E})$$

$$h\nu_{\uparrow\uparrow} = |2\mu_{\rm n}B + 2d_{\rm n}E|$$

$$h\nu_{\uparrow\downarrow} = |2\mu_{\rm n}B - 2d_{\rm n}E|$$

$$H = -(\vec{\mu}\vec{B} + \vec{d}\vec{E})$$

$$h\nu_{\uparrow\uparrow} = |2\mu_{\rm n}B + 2d_{\rm n}E|$$

$$h\nu_{\uparrow\downarrow} = |2\mu_{\rm n}B - 2d_{\rm n}E|$$

$$\Rightarrow$$

$$h\nu_{\uparrow\downarrow} = |2\mu_{\rm n}B - 2d_{\rm n}E| \qquad \qquad d_{\rm n} = \frac{h(\nu_{\uparrow\uparrow} - \nu_{\uparrow\downarrow})}{4E}$$

R&D for the LANLnEDM Experiment

- UCN cell
- Vacuum Chamber

- New switcher with simultaneous spin analyzers
- Field cage, Magnetically Shielded Room (MSR)
- B0 coil, Magnetometry

UCN cell

- NiP Coated Aluminum electrodes
- Acrylic (PMMA) wall with (ID: 50 cm, Height: 10 cm) Deuterated Polystyrene

(dps) coating

Data was taken in different configurations:

- Varying holding time
- With and without the PM window
- At different PM field (for benchmarking the simulation)

World's highest

demonstrated

stored UCN density for

nEDM

experiment

Average UCN loss (at 5 T field)

due to a 0.003 in thick aluminum

window =

 $(10.38 \pm 2.84)\%$

Simultaneous Spin Filter

Simultaneous Spin Filter

Simultaneous Spin Filter

Scanning for Magnetic Impurities

- The electrodes are put on the turntable
- There are two fluxgates (Mag-13MSQ100)
- Distance from the fluxgate sensor to the surface of the object is 0.75 in
- Fluxgate output fed into a Bartington SCU1
 (signal conditioning unit), gain at 1000x.
- Turntable rpm: 0.5
- Sensor field direction
 - +Bx: Down
 - +By: Away from the door
 - +Bz: Away from the big MSR

Scanning for Magnetic Impurities

The turntable is turned using a motor from outside of the magnetically shielded room (MSR).

Scanning for Magnetic Impurities

Updates on other Important Components

Field Cage:

- For cancelling the ambient magnetic field
- Installed and tested

Updates on other Important Components

Magneticially Shielded Room (MSR):

- Being installed (by MSC and LANL)
- Partially tested

Updates on other Important Components

Vacuum Chamber:

- Made of fiberglass with resin (Derakane 411)
- Checked for magnetic impurities
- Being vacuum tested

Conclusion

- New timing filter amps and power supplies for the PMTs have been procured
- The second switcher is built and will be tested with UCN soon
- The second simultaneous spin analyzer is being built at Indiana University and will be tested this year
- We plan to start taking production data from next year.

Thank you for your attention